Singular integrals on product spaces with variable coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough singular integrals on product spaces

where, p.v. denotes the principal value. It is known that if Φ is of finite type at 0 (see Definition 2.2) and Ω ∈ 1(Sn−1), then TΦ,Ω is bounded on Lp for 1<p <∞ [15]. Moreover, it is known that TΦ,Ω may fail to be bounded on Lp for any p if the finite-type condition is removed. In [8], Fan et al. showed that the Lp boundedness of the operator TΦ,Ω still holds if the condition Ω ∈ 1(Sn−1) is re...

متن کامل

Parabolic Marcinkiewicz integrals on product spaces

‎In this paper‎, ‎we study the $L^p$ ($1

متن کامل

Singular Integrals with Mixed Homogeneity in Product Spaces

Let Ω ∈ L(logL+)2(Sn−1 × Sm−1) (n, m 2) satisfy some cancellation conditions. We prove the Lp boundedness (1 < p < ∞ ) of the singular integral T f (x1,x2) = p. v. ∫ ∫ Rn×Rm Ω(y1,y ′ 2)h(ρ1(y1),ρ2(y2)) ρα 1 (y1)ρ β 2 (y2) f (x1 − y1,x2 − y2)dy1 dy2, where ρ1 , ρ2 are some metrics which are homogeneous with respect to certain non-isotropic dilations. We also study the above singular integral alo...

متن کامل

Boundedness of Singular Integrals in Weighted Anisotropic Product Hardy Spaces

Let Ai for i = 1, 2 be an expansive dilation, respectively, on R n and R and ~ A ≡ (A1, A2). Denote by A∞(R × R; ~ A) the class of Muckenhoupt weights associated with ~ A. The authors introduce a class of anisotropic singular integrals on R×R, whose kernels are adapted to ~ A in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors est...

متن کامل

parabolic marcinkiewicz integrals on product spaces

‎in this paper‎, ‎we study the $l^p$ ($1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 1987

ISSN: 0004-2080

DOI: 10.1007/bf02384449